MATH 579: Combinatorics

Exam 5 Solutions

1. Prove that $b_{n}=3^{n}$ satisfies the recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}$.

We compute $2 b_{n-1}+3 b_{n-2}=2 \cdot 3^{n-1}+3 \cdot 3^{n-2}=3^{n-2}(2 \cdot 3+3)=3^{n-2}(9)=3^{n}=b_{n}$.
2. Consider the recurrence given by $a_{0}=0, a_{1}=0, a_{2}=12, a_{n}=-3 a_{n-1}+4 a_{n-3}+18(n \geq$ $3)$. Solve this using the methods of our packet.
We start by considering the homogeneous recurrence relation $a_{n}=-3 a_{n-1}+4 a_{n-3}$, with characteristic polynomial $x^{3}+3 x^{2}-4=(x-1)(x+2)^{2}$.
Hence the general solution to the homogeneous problem is $a_{n}=A+B(-2)^{n}+C n(-2)^{n}$.
We turn now to the nonhomogeneous problem. The nonhomogeneous term is a polynomial of degree 0 , but all such are already included in the nonhomogeneous case. Hence we instead guess $a_{n}=D n$ as a solution. We get $D n=-3 D(n-1)+4 D(n-3)+18$. The n terms all cancel, leaving $0=3 D-12 D+18$, so $D=2$.

The general nonhomogeneous solution is $a_{n}=2 n+A+B(-2)^{n}+C n(-2)^{n}$.
We now use our initial conditions: $0=a_{0}=2 \cdot 0+A+B(-2)^{0}+C \cdot 0(-2)^{0}, 0=a_{1}=$ $2 \cdot 1+A+B(-2)^{1}+C \cdot 1 \cdot(-2)^{1}, 12=a_{2}=2 \cdot 2+A+B(-2)^{2}+C \cdot 2 \cdot(-2)^{2}$. This gives system of equations $\{0=A+B, 0=2+A-2 B-2 C, 12=4+A+4 B+8 C\}$. This has solution $A=0, B=0, C=1$.
Hence, the solution we seek is $a_{n}=2 n+n(-2)^{n}=n\left(2+(-2)^{n}\right)$.
3. Consider the recurrence given by $a_{0}=0, a_{1}=0, a_{2}=12, a_{n}=-3 a_{n-1}+4 a_{n-3}+18(n \geq$ 3). Solve this using generating functions.
We set $A(x)=\sum_{n \geq 0} a_{n} x^{n}$. Multiplying our relation by x^{n} and summing over $n \geq 3$, we get $\sum_{n \geq 3} a_{n} x^{n}=-3 \sum_{n \geq 3} a_{n-1} x^{n}+4 \sum_{n \geq 3} a_{n-3} x^{n}+18 \sum_{n \geq 3} x^{n}$. Hence $A(x)-0-0 x-$ $12 x^{2}=-3 x(A(x)-0-0 x)+4 x^{3} A(x)+18 x^{3} \frac{1}{1-x}$. We rearrange as $A(x)\left(1+3 x-4 x^{3}\right)=$ $12 x^{2}+\frac{18 x^{3}}{1-x}=\frac{12 x^{2}+6 x^{3}}{1-x}$. Hence $A(x)=\frac{12 x^{2}+6 x^{3}}{(1-x)\left(1+3 x-4 x^{3}\right)}=\frac{12 x^{2}+6 x^{3}}{(1-x)^{2}(1+2 x)^{2}}$.
We now have a partial fractions problem of $A(x)=\frac{A}{1-x}+\frac{B}{(1-x)^{2}}+\frac{C}{1+2 x}+\frac{D}{(1+2 x)^{2}}$, or $6 x^{2}(2+x)=A(1-x)(1+2 x)^{2}+B(1+2 x)^{2}+C(1-x)^{2}(1+2 x)+D(1-x)^{2}$. Taking $x=1$, we get $18=B(1+2)^{2}$, or $B=2$. Taking $x=-\frac{1}{2}$, we get $6\left(\frac{1}{4}\right)\left(\frac{3}{2}\right)=D\left(1-\frac{-1}{2}\right)^{2}$, or $D=1$. Taking $x=0$, we get $0=A+B+C+D$, or $0=A+C+3$. Taking $x=-1$, we get $6(1)(1)=A(2)(-1)^{2}+B(-1)^{2}+C(2)^{2}(-1)+D(2)^{2}=2 A+B-4 C+4 D=2 A-4 C+6$, or $0=A-2 C$. Solving, we get $A=-2, C=-1$.
Hence, $A(x)=-2 \sum_{n \geq 0} x^{n}+2 \sum_{n \geq 0}(n+1) x^{n}-\sum_{n \geq 0}(-2)^{n} x^{n}+\sum_{n \geq 0}(n+1)(-2)^{n} x^{n}=$ $\sum_{n \geq 0}\left(-2+2(n+1)-(-2)^{n}+(n+1)(-2)^{n}\right) x^{n}$. Hence $a_{n}=-2+2(n+1)-(-2)^{n}+$ $(n+1)(-2)^{n}=2 n+n(-2)^{n}=n\left(2+(-2)^{n}\right)$.

